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ABSTRACT 

Mission-critical communications (MCC) refer to those that support operations involving 
high risk to human life and property. As radio frequency (RF) spectrum becomes highly 
contested, ensuring mission-success with MCC requires intelligent planning policies. This 
project develops a novel game-theoretic model for MCC and a Deep Q-Network (DQN) 
implemented Deep Reinforcement Learning (DRL) based Mission-Critical Communica-
tions Protocol (MCCP) to learn to complete a mission within given resource-constraints 
against an adversary. An example critical mission is defined as two radios exchanging 
messages within a given time-constraint over a two-way communication link in the pres-
ence of a jammer. Mission-planning requires radios to learn when and how to switch 
directions vs. channels in response to the behavior of the adversarial jammer as well as 
wireless channel anomalies. Through extensive-form sequential-game modeling, the 
problem was shown to be too complex to solve analytically and beyond traditional rein-
forcement-learning due to uncountable state-space. Results on an actual wireless network 
showed that the DQN-implemented DRL could achieve mission-success with as high as 
0.9 probability. A new DRL algorithm called Deep Policy Hill Climbing was developed 
that outperformed the original DQN-DRL algorithm. Beyond MCC, this framework can be 
applied to a wide-variety of planning under uncertainty problems that arise, for instance, 
in disease control, refugee crises, disaster relief and resource-allocation in management.
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Game Theory, Mission-critical Communications, Mission-critical Communications Proto-
cols, Nash Equilibrium, Sequential Games, Subgame Perfect Equilibrium

INTRODUCTION 

From Isaac Asimov’s Bicentennial Man to the Terminator franchise, developing Artificial 
Intelligence (AI) capable of learning to make decisions by itself has long been a human fasci-
nation. Formal scientific and engineering approaches to developing AI are commonly known 
as machine learning (ML). A seldom considered novel application of machine learning and 
AI is in mission planning.

Many modern military, humanitarian, and scientific missions critically depend on over-the-
air (OTA) wireless communications between agents/nodes. A failure in the communications 
network can be catastrophic, costly, and even life-threatening. Figure 1 shows an example in 



49NMAS Competition Winning Papers  |  NMJS 2020  |  Volume 54 No. 2

which a rocket launch is managed remotely by two locations. Such distributed control of crit-
ical missions is becoming increasingly desirable to reduce the chances of human error and to 
defeat deliberate sabotage by rogue actors.

This gives rise to the importance of mission-critical communications (MCC) planning 
since mission-success now crucially depends on the communications system. Mission-crit-
ical communications refers to reliable communications between nodes that will lead to 
mission-success in operations involving high risk to human life and property, especially when 
there are deliberate and adversarial jamming signals (1). Most existing work on MCC focuses 
on the reliability of communications infrastructure (2). As RF spectrum becomes highly 
contested, however, ensuring success of missions involving distributed agents as in Figure 
1 requires such infrastructure to be supported by mission-critical communications protocols 
(MCCP) that implement intelligent planning policies. Both design of mission-critical commu-
nications planning techniques and their implementation as MCCPs are problems that have 
not yet received sufficient attention despite their growing importance.

Mission-critical communications planning is one example from the general problem of 
planning-under-uncertainty (3) encountered in different fields ranging from how to assign 
resources in a manufacturing plant to how to respond to an adversary in a war-like conflict. 
Mathematically, a broad class of planning problems can be modeled as a Markov Decision 
Process (MDP) (4). In an MDP, an agent takes action at in an environment characterized by 
a state st and receives a reward rt. Agent’s goal of mission-success can be modeled as maxi-
mizing an accumulated discounted-reward. Agent’s actions effect the environment so that 
the next state is not only a function of the current state but also of the agent’s selected action. 
Thus, the next state of the environment st+1 is determined according to the transition probabil-
ities P(st+1 | st , at) where P(st+1 | st , at) is the probability of state st+1 given action at was executed 
in current state st.

If all state transition probabilities and rewards were known exactly, the so-called Bellman 
optimality equations characterize the optimal planning policy which can be solved using 
Dynamic Programming (4). When these are unknown, reinforcement learning (RL) is a popu-
lar machine learning paradigm for obtaining optimal planning policies (5).

Figure 1. Mission-Critical Communications Planning for 
Distributed Control of a Rocket Launch.
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The MCC planning, however, is more difficult than classic MDPs for three reasons: First, 
there are adversaries that attempt to hinder the mission by deliberately jamming signals. This 
turns the problem into a stochastic game (6). Second, state transition probabilities are not 
only unknown but also can be time-varying due to the nature of the wireless links (7). Third, 
the state of a mission-critical communications game may take values on an uncountable set 
rendering the traditional RL techniques not applicable. 

The project objective is to develop a new approach to solve the MCC planning problem by 
leveraging the recent advances in Deep Reinforcement Learning (DRL). The project defines 
the MCC problem to be OTA sharing of mission-critical information residing at two distrib-
uted agents within a given time constraint. The MCC planning problem is to select at each 
decision epoch who should transmit information packets and on which channel, as shown 
in Figure 2.

We develop a general game-theoretic model of this MCC planning problem that lends 
itself for the application of DRL. Then, we design and implement a Deep Q-Network (DQN) 
based DRL algorithm to learn effective planning policies that lead to mission-success with 

Figure 2. Dependence of Mission-Success and Failure on a Mission-Critical Communications 
System.
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high probability. The project also proposes a new DQN-based DRL algorithm, termed Deep 
Policy Hill Climbing (DPHC) which is shown to beat the original DQN-DRL algorithm when 
applied to the MCC planning problem (8). These algorithms are used to develop a MCCP for 
a two-node network made of Universal Software Radio Peripheral (USRP) Software-defined 
Radios (SDRs). Finally, the MCCP is implemented on this real wireless network and the effec-
tiveness of the DQN-based DRL MCC planning is shown for exchanging OTA mission-critical 
information in the presence of a jammer and wireless channel anomalies.

THEORETICAL BASIS 

First, we develop a mathematical model for the MCC planning problem using game-the-
ory. Consider two nodes, A and B, that need to exchange their private, unique messages with 
each other within a given time constraint of N decision-epochs for a mission to be successful. 
The messages of nodes A and B are made of NA and NB and packets, respectively. There are 
M/2 frequency channels in each direction. At each decision-epoch, nodes make a decision 
on who should transmit using which channel. Since channels are unidirectional, the choice 
of channel also implies which node will transmit. This is a finite-horizon sequential decision 
problem in which N decisions are to be made so that NA and NB packets can be exchanged in 
the two directions. To develop a formal approach to solving this mission planning problem, 
we use game theory.

The MCC planning problem is an extensive-form game made of N sequential actions. Since 
two nodes are on one side against either the nature or a jammer, or both, the two nodes are 
represented by a single “Radio” player. The other player is the nature or the jammer. Figure 3 

Figure 3. Extensive-form Game Representation of the Mission-Critical Communications Planning 
Problem with Two Decision Epochs.
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shows the extensive-form game representation of a mission consisting N = 2 epochs with each 
link having one frequency channel (CH 1 from A to B and CH 2 from B to A).

The game played at each decision epoch can be characterized by a state that represents the 
progress of nodes towards completing the mission. Hence, this is a stochastic, or a Markov, 
game. At each epoch of the game/mission, a channel is selected with the goal of ensuring 
exchange of messages of each other before the N decision epochs are over. Since what matters 
is the mission success or failure at the end of the N periods, we define the reward for selecting 
action a when in state s at time t as

Where LA
t, LB

t and TR
t denote the remaining packets at node A, remaining packets at node B 

and the remaining time before the mission runs out of time respectively. 

A suitable formulation is to seek a channel selection policy over the mission-duration (MD) 
in order to maximize the following discounted-reward:

Where 0 ≤ γ ≤ 1 is a discount-factor. The most well-known solution concept for games is the 
Nash Equilibrium (NE). However, in extensive-form games the NE proves inadequate since 
some NE action sequences may not look credible when players are half-way through the 
mission, although they might have looked credible at the outset. Hence, when solving exten-
sive-form games, the most common goal instead is to find a so-called subgame perfect equi-
librium (SPE) which is an NE of the game with the additional requirement that any restriction 
of the strategy is a NE for the corresponding restriction of the game for all sub-games of the 
game (6).

In the MCC planning game, the number of policies to consider can be very large and even 
uncountable. For example, observe from Figure 3 that the number of action paths increases 
exponentially with mission-duration N and the channels on each link, making analytically 
solving for the desired equilibria in real-time impractical. For example, finding a solution 
along the game-theoretic criterion of sub-game perfect equilibrium can be computationally 
prohibitive. Adding an adversary (i.e., a jammer) further increases the game’s complexity.

As a practical solution that can be applicable to a wide range of situations, this project 
proposes to train a suitable artificial neural network (ANN) through DRL to learn an optimal 
MCC plan.  Such neural networks are called the DQN’s (8).  
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EXPERIMENTAL METHODS

Deep Q-Network DRL Solution for Mission-Critical Communications Planning Problem: 
Since the radio’s decisions must be a function of the amount of message packets remaining 
at each node (LA

t and LB
t) as well as the remaining time from the mission-duration (TR

t), we 
define the state st of the game at time t as the following 4-tuple:

Where at-1 denotes the channel selected at the previous decision-epoch. An experience-tuple 
is defined as x = (s, a, r, s’) if executing action at = a when in state st = s results in system tran-
sitioning to the new state st+1 = s’ while observing a reward rt = r.

Shallow RL uses a Q-table to learn a discretized version of the optimal state-action value 
function, denoted as Q(st ,a), from which an optimal policy can be obtained (5). If the input 
state st takes a continuum of values, as in the MCC planning problem, using a Q-table to 
learn the state-action value function is not possible since there is an infinite number of states. 
Therefore, this project constructed an ANN to learn the state-action value function. The idea 
is to train the ANN sufficiently so that when the game state st = (LA

t, LB
t, at-1 , TR

t)T is input to 
the ANN, it can output the corresponding Q(st ,a) estimates from which an optimal policy can 
be obtained.

The DQN Algorithm, developed by the Google DeepMind in 2015, is a clever extension 
of the classic Q-Learning algorithm to handle very large (or even uncountable) state-action 
spaces (8). It uses a Deep Neural Network (DNN) as a function estimator to approximate the 
state-action value function Q(st ,a) and succeeds in learning the optimal state-action value 
function Q*(s, a)  thanks to two innovative concepts: experience-replay and the target network 
(8). The experience replay avoids the temporal correlations of experiences used for training 
which can lead to non-convergence of ANN weights. The use of a so-called target Q-network 
removes the problem of having to learn a moving target. Figure 4 shows the DQN-DRL algo-
rithm for MCC planning developed in this project. We denote this as the DQN Algorithm #1.

At each decision-epoch, the DQN Algorithm #1 either picks the action with the highest esti-
mated Q(s,a) value according to the DQN output, or randomly with an appropriate explora-
tion rate ϵ. After executing the chosen action, nodes observe a reward r depending on whether 
the nodes succeeded in completing the mission or not and the resulting next state s’. The 
experience tuple x=(s, a, r, s’) is added to the experience replay memory and then a random 
minibatch of L experience tuples is drawn from the replay memory. These L experience tuples 
are used to update the weights of the DQN assuming that the desired output is the one that 
is predicted by the target Q-network. As is the case with all ANNs, DQN Algorithm #1 uses a 
variation of the so-called back propagation algorithm to update the weights (9).

Mission-Critical Communications Planning in a Real Wireless Network made of Software-de-
fined Radios: The DQN-based DRL of MCC planning was fully-implemented as a protocol on 
an MCC network formed of real wireless transceiver hardware. We used two USRP SDRs as 
two radio nodes (A and B). Each node has a unique message to convey to the other node for 
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the mission to be a success. Two communication links were then defined going in opposite 
directions: A → B and B →A. Two channels each assigned to each link: Channels 1 and 2 for 
sending messages from A to B and Channels 3 and 4 for sending those from B to A.

Figure 4. DQN Algorithm #1: Deep Q-Network Deep Reinforcement Learning (DQN-DRL) 
Algorithm.
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The total time available to complete the mission, called the mission-duration, is N decision 
epochs. Within each decision epoch of duration Td, a node can transmit a random number of 
packets. In terms of decision epoch index k, for k = 1,…,N, the state sk of the game at decision 
epoch k is sk = (LA

k, LB
k, ak-1 , TR

k)T. 

The implementation of DQN-based MCC planning on USRPs required the development of 
an MCCP protocol for two USRPs to establish and maintain a wireless link. This MCCP was 
implemented in LabVIEW and integrated in to the USRP hardware over an Ethernet port. 
Each USRP was connected to its own computer terminal running LabVIEW software. For 
networking simplicity, we implemented the DQN-DRL only at the node A USRP and made 
Node B execute actions learned at node A and provided to it over a wireless feedback channel 
by A.

For this scheme to work, the USRP A which maintains the DQN needs to be able to deter-
mine if and when a node’s receiving channel is jammed so that it can decide whether to trans-
mit or receive and which channel to switch to. To construct the state sk at epoch k, it must also 
know how much message is remaining on B’s side (LB

k), as well as its own (LA
k).

Obviously, Node A always knows the value of LB
k. It can also determine if its own reception 

is jammed by observing how many packets it receives within a decision epoch and compar-
ing that with a threshold. For Node A to learn the value of LA

k, Node B must send Node A 
acknowledgments for packets it receives. For this also we used the same feedback channel: 
In each decision epoch, node B feedback the number of packets received from node A so 
far when it successfully decodes a packet. We assume that the feedback channel operates 
on a completely separate frequency from the four communications channels used for actual 
message packets and is sufficiently secure so that the action decisions and acknowledgment 
messages cannot be jammed.

Figure 5 shows the timing flow-graph of the designed MCCP that was implemented on a 
wireless network made of two USRP SDRs. In the example in Figure 5, the action sequence 
selected by the DQN agent is channels 1, 3, 4, and 2.

Figure 5. Designed and Implemented DQN Planning-based Mission-Critical Communications 
Protocol.
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Statistical Modeling of Over-the-Air Mission-Critical Communications for Offline Training of 
Deep Q-Network: Directly constructing a DQN in LabVIEW and training on USRP hardware in 
real-time is a time-consuming task since an actual communications mission may last 10 to 20 
minutes. Hence, a DQN was first designed, trained, and tested offline by simulating the entire 
system made of radios and jammers in MATLAB and then fine-tuned by updating weights 
during real-time MCC. For this approach to be successful, the MATLAB simulation needs to 
be as close to the real communications system as possible. 

The critical quantity that needs to agree with the actual wireless network is the number of 
packets successfully communicated OTA during each decision epoch on links from nodes A 
to B and B to A, denoted respectively by random variables XA and XB. We model XA and XB as 
normal random variables (10). 

A normal random variable is fully characterized by its mean and the variance (10). If XA,i 
and XB,i, for i = 1, …, n, denote a collection of measurements of XA and XB, the means and the 
variances of packet throughput per decision epoch on each direction can be estimated as 
follows:

where µA and µB are the means of XA and XB, respectively and σA
2 and σB

2 are the variances of 
XA and XB, respectively. Then during each decision epoch of a simulated mission, we draw XA 
according to the following normal pdf (similarly, for XB) (10):

Adversarial Jammer Design and Implementation: The jammer is a separate radio capable of 
transmitting on any channel in either link. The developed sequential jammer jams channels 
one at a time in a pre-defined order. It jams a channel for a certain duration and changes to 
the next channel. The initial channel of this jammer is drawn uniformly randomly. Hence, 
even with a pre-defined sweeping pattern, this jammer can pose a significant challenge to 
an MCC link due to the randomness observed in the jamming sequence in different mission 
trials. This was implemented as a protocol on LabVIEW and integrated on to a third USRP 
SDR.

A Brand-New DQN-DRL Algorithm: Deep Policy-hill Climbing (DPHC) Algorithm: A draw-
back of the Q-Learning algorithm (11) used in the DQN Algorithm #1 is that it can only learn 
pure strategies. A pure strategy assigns 100% probability to a single action. However, a mixed 
strategy assigns probabilities to several different actions. This ensures the possibility of learn-
ing an NE since mixed strategy NE are guaranteed to be present while pure strategy NE may 
not always exist (6). Moreover, traditional Q-Learning can suffer from possible slow conver-
gence in multi-agent games (12). The so-called Policy Hill Climbing (PHC) algorithm is a 
formal approach to learn mixed strategies in multi-agent games (13).
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For the first time, this project developed a Deep PHC algorithm that accelerates the policy 
learning through a variable learning rate. In Figure 6 we show the newly developed Deep Poli-
cy-hill Climbing (DPHC) DRL algorithm for MCC planning that we have denoted as the DQN 
Algorithm #2. As can be seen from Figure 6, the DPHC algorithm operates similar to the DQN 

Figure 6. DQN Algorithm #2: Deep Policy-hill Climbing (DPHC) Deep Reinforcement Learning 
Algorithm.
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but for a key difference in updating the weights in step (4d): we reinforce those action choices 
that are the best for that state according to the current DQN by amplifying the desired Q (s,a) 
for those actions while de-emphasizing those for the remaining actions.

RESULTS

Since the primary objective of mission-planning is achieving mission-success, our main 
performance metric is the mission-success probability (MSP) defined as:

To show that the DQN is an effective approach for solving the MCC planning problem, perfor-
mance of the DQN was evaluated in five cases. 

In the first case based entirely off MATLAB simulations, we simulated a general MCC plan-
ning problem in which the message at each node is made of five packets and during each 
decision epoch a single packet can be transmitted. We used an ANN made of three hidden 
layers with 24 neurons each. Both input and output layers are made of four neurons each 
corresponding to the length of the state vector and the number of channels. We denote this 
as the 4x24x24x24x4 net.

Figure 7 shows the MSP during and after training for mission-durations N=10, 12 or 
14 epochs in the presence of a sequential jammer. Since initial channel of this jammer is 
drawn uniformly randomly, even with a pre-defined sweeping pattern, it poses a signifi-
cant challenge to the mission-success. Figure 7 not only shows the effectiveness of DQN in 
learning good planning policies, but also shows how difficult the learning problem is as the 
mission-duration tightens.

Figure 8 shows the effectiveness of the MCC planning with a DQN-DRL (after training over 
10K missions) when compared to random decisions. Clearly, DQN-DRL results in MCC plan-
ning policies that are significantly better performing than those with random decisions. We 
quantify this by defining the Percentage Mission-Success Improvement (PMSI) relative to the 
random planning as below: 

where MSPDQN and MSPRP refer, respectively, to MSP with DQN based DRL and with random 
planning.
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Figure 7. Mission-Success Probability of DQN-based Mission-Critical Communications Planning 
during and after Training in the Presence of a Sequential Jammer. (TOP) Planning Over 10 Decision 
Epochs, (MIDDLE) Planning Over 12 Decision Epochs, (BOTTOM) Planning Over 14 Decision 
Epochs.
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Table 1 shows the computed PMSI improvements after training corresponding to the results 
shown in Figure 8. The improvements are more pronounced for shorter mission-durations 
since there is more room for improvement due to the smaller MSPs.

Next, we offline trained a DQN suitable for the hardware-implemented MCC system built 
with USRPs controlled by LabVIEW. The four channel frequencies were 2.04 GHz, 2.08 GHz, 
2.12 GHz and 2.16 GHz. Both nodes used QPSK modulation at 50K symbols/second. The 
feedback channel operated at frequency 2.38GHz using the same modulation. We assigned 
each node a message made of 100 packets. Each packet contained a critical information that 
was packed in to 5888 bits. Before transmission 1380 guard bits and 1104 synchronization bits 
were added so that each transmit packet was about 8372 total bits. 

Figure 8. Performance Improvement of DQN-based Mission-Critical Communications Planning 
during and after Training Compared to Random Planning Lengths in the Presence of a Sequential 
Jammer (Different Mission-Durations).

Table 1. Percentage Mission-Success Improvement with DQN-DRL Planning Relative to 
Random-decision Planning.
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To pre-train a DQN in offline simulations, we estimated the means and variances of random 
variables XA and XB corresponding to the number of successful packet transmissions from 
node A to B and B to A, respectively. For this, we collected the number of packets transferred 
on each link during a decision epoch as shown in Table 2.

From these measurements we computed the means and the variances of packet throughput 
per decision epoch on each direction as follows:

Figure 9 shows the MSP with the above model for the packet transmission distribution on 
each link for mission-durations of N = 4, 6 and 8 decision epochs.

Figure 10 shows the MSP of the DQN-DRL mission-critical communications planning 
compared to random planning while Table 3 shows the PMSI corresponding to the results 
shown in Figure 10. 

Table 2. Number of Successful Packet Transmissions During a Decision Epoch.
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Figure 9. Mission-Success Probability of DQN-based Mission-Critical Communications Planning 
in a Wireless Network during and after Training in the Presence of a Sequential Jammer. (TOP) 
Planning Over 4 Decision Epochs, (MIDDLE) Planning Over 6 Decision Epochs, (BOTTOM) 
Planning Over 8 Decision Epochs.
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Table 3 shows that the trained DQN-based MCC planning achieves significantly better 
mission-success improvements over random planning policies. Again, with tighter 
mission-durations, the improvements are more pronounced since MSPs are relatively low.

The third set of experiments evaluated the DQN-based MCC planning performance with 
OTA mission-critical information exchanges in an actual wireless network made of USRP 
SDRs. The DQN made of the 4x8x8x8x4 net trained for a mission-duration of N=6 epochs 
over a 20K training period was integrated into the node A’s LabVIEW program to implement 
the MCCP protocol. The actual OTA MCC testing of the two-node link in the presence of 

Figure 10. Performance Improvement of DQN-based Mission-Critical Communications Planning 
in a Wireless Network during and after Training Compared to Random Planning Lengths in the 
Presence of a Sequential Jammer (Different Planning Lengths).

Table 3. Percentage Mission-Success Improvement with DQN-DRL Planning Relative 
to Random-decision Planning in a Wireless Network Simulated with Estimated 
Throughput Parameters.



64NMAS Competition Winning Papers  |  NMJS 2020  |  Volume 54 No. 2

a sequential jammer was performed at the Communications Lab at the University of New 
Mexico. Jammer was designed to sequentially jam channels starting from a random channel 
with a channel change every 3 epochs. 

Figure 11 shows the remaining packets at node A (Left Y-axis) and node B (right Y-axis) 
at each decision epoch as the mission evolves. Each decision epoch was about 150 seconds 
so that the duration of a single mission made of six decision epochs was about 15 minutes. 
Figure 11 summarizes results obtained over 10 mission trials. As can be observed from Figure 
11, only 1 out of the 10 missions ended in failure showing the power of DQN-based DRL 
to learn effective mission planning policies in dynamic channels with wireless propagation 
anomalies and adversarial jammers.

We denote by random variable T the number of decision epochs for completing the mission 
when the mission was successfully completed.  Table 4 shows observed values of T for the 
above 10 mission trials.

Figure 11. Critical Message Exchange Performance of DQN-based Mission-Critical Communications 
Planning in an Actual Wireless Network in the Presence of a Sequential Jammer.
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From this data we compute the average duration for mission completion, denoted by the 
symbol T with a line over it, when the mission is completed:

Where K ≤ N is the number of missions that was completed successfully. The spread of T 
around this average can be characterized by its standard deviation computed as:

Fourth case was to evaluate the performance of MCC planning in wireless networks with 
DQN-based DRL for larger critical message lengths of 250 and 500 packets. Tables 5 and 6 
summarize the performance averaged over 10 trials for different mission-durations.

Tables 5 and 6 affirm the effectiveness of DQN-based MCC planning in ensuring 
mission-success with drastically higher likelihoods compared to what is achievable with 
random planning.

Finally, we evaluated the performance of our new DPHC algorithm compared to the Google 
DeepMind’s original DQN algorithm. Figure 12 shows the MSP achieved under DQN and 
DPHC algorithms during training and testing.

According to Figure 12, the DQN outperforms DPHC during training, while during testing, 
DPHC-DRL outperforms the DQN. The reason is that during training, we force our DPHC to 
select actions according to a mixed policy whereas original DQN is allowed to follow the pure 
strategy suggested by the DQN. This makes the DPHC to select inferior actions that lead to 
mission-failure. However, these failures allow it to learn a more robust decision policy. During 
testing, on the other hand, both DQN and DPHC are allowed to select actions according to 
the greedy pure strategy derived from the predicted Q(s,a). Now, the DPHC’s more robust 
policy is capable of planning MCC more successfully while original DQN displays somewhat 
erratic performance. With 10K training, the new DPHC achieves a PMSI of 29% relative to the 
original DQN.

Table 4. Number of Decision Epochs to Complete Each Successful Over-the-Air Mission.

Table 5. Averaged Performance of MCC Planning with DQN-DRL in Simulated Wireless Networks 
with Estimated Realistic Throughput Parameters. Message Size = 250 Packets.

Table 6. Averaged Performance of MCC Planning with DQN-DRL in Simulated Wireless Networks 
with Estimated Realistic Throughput Parameters. Message Size = 500 Packets.
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DISCUSSION 

The first experiment case established the potential of the proposed approach in a simplified 
setting without the added complications of wireless channel anomalies, node synchroniza-
tions, computational/processing delays, and USRP hardware imperfections. Results in Figures 
7 and 8 verified that indeed MCC planning with DQN-based DRL can lead to significant 
performance improvements compared to random policies. For example, for mission-dura-
tions of 14 epochs, the DQN’s MSP of 0.9998 is a 179% improvement over the random plan-
ning. This case also served to offer guidelines on how to select the overall structure of the 
ANN as well as parameter values such as learning rate and training period length. 

The second case used a faithful simulation of wireless networks with estimated throughput 
parameters to train a DQN that has a good chance of performing well once integrated into the 
actual hardware. The key to the success of this approach was good statistical modeling and 

Figure 12. Comparison of Mission-Success Probability of DQN-based and the Newly Designed 
DPHC-based Mission-Critical Communications Planning (Over 6 Decision Epochs) in the Presence 
of a Sequential Jammer. (TOP) during Training. (BOTTOM) after Training.
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estimation of the key parameters that affect the MCC planning. The 90% MSP achieved in the 
third case, once a DQN trained with this model was integrated in to the real USRP hardware 
based wireless network, proved that our statistical modeling and estimation approach of the 
associated parameters are indeed reasonable.

As seen in Figure 10, the DQN does considerably better in all tested mission-durations 
compared to random planning. Tables 5 and 6 showed that these conclusions hold even with 
larger critical information messages of 250 and 500 packets. In all cases, the reported perfor-
mance metrics were evaluated by averaging over 10 trials to reduce the effects of statistical 
variations.

Finally, we compared the performance of the MCCP based on the developed DPHC Algo-
rithm to that based on the original DQN algorithm. As Figure 12 illustrates, our DPHC proved 
on-par or better than the DQN after the training.

Looking ahead towards future work, since the DQN must learn to complete a mission as 
quickly as possible, a new reward system can be designed to assign higher rewards when-
ever a mission is completed with a smaller number of decision epochs, while a fixed negative 
reward is assigned for those failed missions as before. For example, if the nodes managed 
to finish 2Td time intervals before the mission duration, a total of +2 would be added to the 
episode reward rather than the meager +1. This incentivizes the DQN to complete a mission 
faster. Another future work is to analyze the effectiveness of the developed DQN-based DRL 
policies against other types of jammers such as Markov and smart jammers. 

CONCLUSIONS 

The contributions of this project are two-fold: First, the project developed a novel mathe-
matical model for mission-critical operations and showed through MATLAB simulations that 
a DQN can learn how to solve the associated planning problem. Second, it explored an exam-
ple scenario of exchanging OTA messages in a real wireless network formed of USRP SDRs 
within a time constraint. In addition, a new DPHC algorithm was developed that outper-
formed the Google DeepMind’s DQN algorithm significantly. Hence, the project not only 
serves as an important contribution to the field of MCC planning but also shows the relevance 
of the developed DQN-based DRL approach to a wide range of planning under uncertainty 
problems. These include disease control, food/crop management, refugee crises, troop distri-
bution, and stock optimization to name a few. 

Ultimately, this project demonstrates that DQN-based DRL can be an effective solu-
tion for mission planning problems. Since currently most mission-critical operations are 
being carried out manually making them prone to human error that can lead to disastrous 
outcomes, this project serves to make the case for adapting AI techniques to remove or 
reduce the risk of human errors in high stake missions. 
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