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ABSTRACT 

In the past five years, SpaceX has revolutionized the aerospace industry by introducing a 
new rocket that can propulsively land. At the heart of these rockets, and virtually all orbital 
and suborbital spacecraft, is thrust vector control (TVC). The purpose of this project was to 
develop a robust and versatile control algorithm for TVC rockets and to validate this con-
trol system using a simulation and a real-life model of a powered model rocket with TVC  
capabilities. The simulation was able to recreate a rocket’s flight based on physical aspects  
such as the mass moment of inertia, thrust of the engine, drag coefficient, and the 
control authority of the thrust vector control mount. The real-life model validated 
the simulation after cross-referencing the simulation results with data collected from 
the actual flight. Using these models, a control system and simulation capabilities 
for use on different rockets were developed.
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1 INTRODUCTION 

Currently, there are over 10,000 companies in space technology development with a 
combined value of over $4 trillion (Koetsier, 2021) dedicated to advancing technologies in 
navigation, tourism, national security, communication, and outer space research. This expan-
sive growth prompts the need for new suborbital and orbital-class vehicles to transport these 
technologies into outer space. Although these vehicles, the majority being rockets, pres-
ent multiple challenges, one of the biggest obstacles is developing a navigation and control 
system to guide them.

A majority of these spacecraft use a technique called thrust vector control (TVC) (Figure 1). 
By angling or vectoring the direction of the thrusting component, the rocket has control over 
position and orientation, even in a non-atmospheric environment (Hall, 2021). Engineers 
have designed and implemented gimbals into the rocket engines to allow for this technique 
across a variety of different rockets, but the software to control these gimbals and the rockets 
becomes very complicated because of the high speeds, large masses, and precision required 
from spacecraft. Furthermore, methods to tune these control algorithms also become very 
complex due to the high cost and the large number of variables involved in a rocket flight. 
Although a majority of rockets use the same technique as TVC for active control, the control 
system design and tuning present many challenges.
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The purpose of this research and engineering project was to design a versatile control 
system that is compatible with different dynamics of different rockets and to create a simu-
lation to tune this control system and predict the flight dynamics of different rockets. Imple-
mentation of this robust and dynamic control system and simulation offers a simpler way 
for the growing space industry to solve one of the most challenging problems of guidance, 
navigation, and control. In this project, a control algorithm, orientation scheme, and simula-
tion were developed and tested in the form of a model rocket with a TVC system and control 
system implemented. 

1.1 Control Theory

The control system that we decided to use and tailor to rocket guidance, navigation, and 
control, or GNC, was the very widely used Proportional-Integral-Derivative (PID) controller. 
This is a feedback controller that regulated steam engines during the industrial revolution, 
improved the yield from windmills and industrial processes worldwide, and lies at the heart 
of autopilots used in commercial airplanes. This control algorithm allows for a simple inte-
gration and tuning process for all rockets of various sizes and purposes by adjusting three 
values. The PID controller is defined as

Figure 1. By vectoring the thrust, the rocket’s orientation is rotated about the vehicle’s center of 
mass. This method can be used to control the orientation and position of a model rocket.
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Where u(t) is the output, Kp, Ki, and Kd are the three gains, e(t) is the error value and the 
input to the controller, and ∆t is the change in time. There are three terms to this equation: 
the proportional, integral, and derivative of the error value e(t), which are scaled using the 
adjustable gains Kp, Ki, and Kd. The proportional, integral, and derivative components allow 
for control over oscillations, overshoot, and small errors. This simplicity allows for use on 
lower-powered flight controllers, but the three components work together to produce a very 
robust, efficient, and versatile control system.

On a rocket, this method can be easily integrated. We can have three PID controllers, one 
for each axis to control orientation. The error, which is inputted into the controller, is equal 
to the setpoint subtracted from the current orientation. The setpoint is adjustable based on 
the desired angle. After performing the proportional, integral, and derivative components, 
we can then command these angles to the gimbal, or thrust vector control mount (Figure 2).

2 METHODS

2.1 Real-World Model

To validate that the control system and simulation worked properly, we designed a model 
rocket and a TVC gimbal in computer-aided design, CAD, and 3D-printed components to 
replicate a real-life rocket (Figure 3).

The rocket itself was printed in PLA and supported by four carbon fiber rods. Parachutes 
that were stored in the upper body were deployed using a small pyrotechnic charge ignited 
by a load driver aboard the flight computer.

The thrust vector control mount was a two-axis (Figure 4) gimbal that was designed to 
vector the rocket motor using two servo motors that were controlled by the flight computer. 
The gear ratio of the motors and the mount was 2:1, which allowed for more accuracy and less 
error within the mount, and the mount had a range of +/- 5 degrees on both axes.

Figure 2. PID Controller for a rocket.
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To control the servo motors, calculate orientation, deploy recovery parachutes, log data, 
and execute the control algorithm, we designed and fabricated a custom flight computer 
(Figure 5). By collecting and analyzing sensor data, the flight computer was designed to 
control all aspects of our model.

Figure 3. The model rocket design in CAD.

Figure 4. The thrust vector control gimbal.
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2.2 Flight Software Design

The flight software was written in C++ and controlled all the components of the flight 
computer and control system. The flight computer ran a finite-state automation function to 
control parachute deployment and data-logging tasks. To calculate the orientation of the craft 
using the angular rate measurements from the inertial-measurement-unit, or IMU, the flight 
computer used quaternions and a linear/1D Kalman Filter to estimate the orientation of the 
rocket. 

2.2.1 Linear Kalman Filter

In our model, a linear Kalman filter is used to filter noise from sensor data (Looney). A 
Kalman filter calculates an estimate of unknown variables within measurements caused by 
external factors. Since velocity and position are calculated by integrating and double-inte-
grating acceleration respectively, even a small amount of noise will cause significant drift in 
the measurements.

We define the Kalman Gain, which is

Figure 5. The flight computer in the design phase.
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Where:

•	 Gn is the Kalman Gain where 0 ≤ Gn ≤ 1

•	 pn is the estimated uncertainty

•	 rn is the measurement uncertainty 

We then calculate the current estimate Xt by

Where:

•	 Xt is the current estimate at time step t

•	 Xt-1 is the previous estimate

•	 Zn is the measurement or the sensor data in our case 

And the estimation uncertainty can be calculated using the Covariance Update Equation

Where q is the process variance, which increases the accuracy based on how much the 
measurement moves. We can then set the previous estimate, Xt-1, to the current estimate

2.2.2 Quaternions and Conversion to Euler Angles

The simple integration of the angular rates provided by the IMU to Euler angles results in 
gimbal lock, where two axes align and differentiation between the two axes is not possible. 
Quaternions and quaternion algebra, which were invented by Sir William Rowan Hamilton, 
were used in this project to solve this issue and to allow for 3D rotations. Quaternions repre-
sent orientation in four dimensions in 3D space. Since the IMU outputs the angular rate of x, 
y, and z in rad/s so we can refer to those as

We can also refer to the base world reference frame, and since the rocket points upwards at 
launch, we can introduce Qinit

Next, we can calculate the quaternion derivative that describes the rate of change of orienta-
tion relative to the earth.

Where:

•	 dQt/dt is the quaternion derivative at time step t

•	 Qt is the orientation at time step t

•	       is the Hamilton Product operator (Appendix B) 
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We can integrate the quaternion derivative to determine the orientation at t with

And ∆t is the time step. We now normalize the quaternion by first calculating the norm, and 
then dividing the orientation by the norm

Where Q1, Q2, Q3, Q4 are the individual elements of quaternion Q. This quaternion can be 
converted back to Euler angles without the risk of gimbal lock by equations 11-13.

Where α is the roll of the craft, β is the yaw of the craft, and θ is the pitch of the craft expressed 
in radians (Figure 6)

To reduce unnecessary complexity, the real-world model did not include roll control, which 
is not controllable by the TVC mount. To account for any roll changes during the flight, θ and 
β must be decoupled from α using

Figure 6. Rocket Rotations
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θ and β can then be inputted into the two PID controllers for both the pitch and yaw axis.

Quaternions are also extremely useful in rotating different orientations. The accelerometer 
unit on the IMU provides linear acceleration in the vehicle reference frame. This reference 
frame is not compatible with velocity and position measurements, as well as accelerometer 
measurements used to detect launch, burnout, and apogee for the finite state automation 
function. By finding the Hamilton product of the orientation quaternions and the acceleration 
readings, we can convert the measurements to a world reference frame. We can refer to the 
accelerometer readings as

Then, we can find the world reference frame orientation by finding the first Hamilton product 
of the orientation quaternion and at.

Next, we find the Hamilton product of Afirst and —Q to flip the reference frame to the correct 
orientation

Where A2, A3, and A4 the 3 of the 4 components of quaternion A, represent the x, y, and z linear 
accelerations in the world frame respectively.

In conclusion, the flight computer:

1.	 Reads raw data from sensors.

2.	 Filters the data using the linear Kalman filter.

3.	 Converts the raw gyro and time parameters into Euler angles using quaternions.

4.	 Inputs the Euler angles into the PID controller and commands the output of the PID 
controller to the servo motors of the TVC mount.

5.	 Rotates the filtered acceleration readings to the world frame using quaternion 
operators and uses these values for the state automation function.

2.3 Simulation

To tune the PID controller and verify that our real-life system would work properly, we have 
created a simulation of the rocket in MATLAB Simulink. We worked to account for many real-
life variables, including:

•	 Noise from sensor data

•	 Latency from flight computer and servo motor 

•	 Wind disturbances

The most fundamental part of the simulation is the 3DOF block, as it utilizes all of the equa-
tions in three degrees of freedom motion to simulate an object in 2-dimensional space. The 
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3DOF block allows us to input x and z direction vector forces and a torque parameter, then 
outputs the x and z position and velocity, along with an angular position and velocity. To 
accurately calculate the torque applied by the TVC mount and from wind disturbances, we 
needed to know the mass moment of inertia (MMOI) and mass of our actual rocket. To find 
the MMOI, we used the bifilar pendulum method, which involves hanging the rocket by two 
parallel strings equidistant from the center of mass and measuring the period of the swing 
rotating around the center of mass. The equation to find the MMOI is:

Where MMOI is the mass moment of inertia, m is mass, g is the gravitational constant, p is 
the period for one complete swing of the rocket, r is the distance from the center of mass and 
where the string is attached, and L is the length of the strings.

2.3.1 Engine Force and Gravity

The two most critical forces being applied to a rocket is the gravity and the engine force. 
The 3DOF block already has a feature for applying gravity, which makes the implementation 
extremely simple. As for the engine force, the data for the D12-0 engine we are using is already 
provided by Estes, so we were able to implement that data into the simulation. However, since 
we are using a TVC mount, we didn’t just want the engine force to be applied in the z-direc-
tion, as it needed to be vectored based on the TVC mount’s position. To solve this, we split the 
force into x and z vectors using the following two equations:

In these equations, Fmotor(x) and Fmotor(z) are the x and z direction vector forces respectively, 
Fmotor is the total engine force, and σ is the angle the TVC mount. The motor mount misalign-
ment, represented by e is to 1 degree to account for any real-life misalignments that may 
occur. We also used this equation 

To calculate the torque produced by the TVC mount, where Tmotor is the torque produced by 
the engine and a is the distance from the center of mass to the end of the rocket motor. The 
way the TVC mount position is calculated will be explained later in the simulation overview.

2.3.2 Noise Addition and PID Calculations

Since the accelerometer used on the real rocket does not yield perfect results, we wanted to 
simulate some of that noise. A random number generator generating values of +/- 0.1 degrees 
was added to the actual angular position of the rocket in degrees.

To calculate the PID values, we use the PID equation. To calculate the output, this equation 
must be the same in both the real-world model and the simulation because we want the Kp, 
Ki, and Kd, gains found in our simulation to be used in the real-life model with optimal results.

2.3.3 Real-Life Limitations

Next, we need to account for some of the real-life limitations of the rocket, such as flight 
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computer delay, servo speed limitations, and servo position limitations. The TVC control 
mount on the real rocket can only move the engine ±5 degrees, so this is accounted for by 
saturating the output u(t) to have a maximum of 5 degrees and a minimum of 5 degrees. 
In addition, the TVC servos have a limited angular rate. To measure the speed of the servo, 
we recorded a slow-motion video of the servo moving as fast as it can and calculated the 
maximum rotational speed to be 258 degrees per second. We used this value as the maxi-
mum rate at which the PID output could change. Finally, flight computer latency needs to be 
accounted for. Although the flight computer latency is estimated to be only 7.5ms, we decided 
to increase it to 50ms to have the simulation account for more imperfection. After the three of 
these limitations are applied to u(t), the final resulting angle will be the position of the TVC 
mount, σ.

2.3.4 Wind Forces

To account for wind that may occur in real flight, we applied torque in the form of a sine 
wave to the rocket to simulate changes in wind speed. By adjusting the amplitude of the sine 
wave, we were able to change the maximum amount of torque applied to the rocket body, 
and by adjusting the frequency of the sine wave, the variance of the wind could be changed. 

For the simulation, we used the maximum amount of wind possible–if the rocket could 
handle very little wind if it could handle lots of wind. After experimenting with different 
amounts of force, the maximum wind force the rocket could handle was a wave with an 
amplitude of 0.1N.m.

2.3.5 Aerodynamic Forces

The two most important aerodynamic forces that act on the rocket are the drag and lift 
force. The drag force acts opposite to the direction the rocket is pointing towards, and the 
lift force acts perpendicular to the rocket but is applied from the center of pressure. We were 
able to implement these forces with the help of software called OpenRocket. OpenRocket is a 
software that allows for the simulation of model rocket launches and lets the user customize 
the rocket. We used this software and created our real-life rocket, ensuring that parameters 
such as the mass, center of mass, MMOI, and shape of the rocket were all the same. Then, we 
exported a large amount of data from OpenRocket for various amounts of wind, including 
the angle of attack, total velocity, drag force, lift force coefficient, and center of pressure posi-
tion. The angle of attack is the angle at which the rocket is relative to the air flowing past it as 
opposed to the ground. All of this data was then implemented into the simulation. However, 
we only received the lift force coefficient, but not the lift force. The equation to find the lift 
force is

Where Fl is the lift force, cl is the lift force coefficient, dair is the density of air, and aref is the 
reference area of the rocket. The density of air is 1.225 kg/m3 at sea level, and the reference 
area is 5.6745.10-3 m2 according to OpenRocket. To find the torque produced by the lift force, 
we multiply the lift force by the distance between the center of pressure and the center of 
gravity, which varies based on the angle of attack of the rocket.
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2.3.6 Tuning for Optimal Results

After each component of the simulation was completed, the next step was to tune the PID 
values Kp, Ki, and Kd. To begin tuning, we set Ki to 0 since its effect was not determined to be 
significant and began experimenting with Kp and Kd values. We knew that low Kp gains would 
result in insufficient correction, and high Kp values would result in significant overshooting. 
Kd gains that were too low would result in overshooting even with low Kp values, and Kd values 
too high would result in extremely rapid oscillations. When we eventually found a Kp and Kd 
value combination that resulted in a successful flight, we began fine-tuning these values by 
moving each of them up and down by small increments individually and seeing if the flight 
had less or more error. Once we found the Kp and Kd values with the smallest amount of error, 
we added back the Ki term and increased it gradually until it hindered the results compared 
to lower values.

3 RESULTS AND DISCUSSION

3.1 Simulation

Once tuning was complete, we got PID values of Kp=0.5, Ki=1.4, and Kd=0.08 inside of the 
simulation. As seen in Figure 7, the rocket coasts up to an altitude of about 18 meters before 
falling back down to the ground. Figure 8 shows the angle of the rocket as a function of time, 

Figure 7. Shows the altitude of the simulated rocket as a function of time.
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which is much more important than the altitude. From 0-1.6 seconds, the TVC mount can 
handle the wind and prevents the rocket from exceeding an angle of 10 degrees, after this, the 
rocket motor burns out and is uncontrolled.

At the time we flew the rocket, the simulation did not account for as many drag forces, so 
the PID gains were instead Kp=0.3, Ki=0.3, and Kd=0.05. These PID gains were then inputted 
into the real-world model’s flight software and flown on the Estes D12-0 rocket motor. For 
simplicity purposes, the software had a constant setpoint of zero on both axes, meaning that 
the rocket would try to stay fully upright.

3.2 Real-World Model

The real-world model as discussed above was flown once using the parameters calculated 
from the simulation. With a height of 412 mm and a diameter of 85 mm, the vehicle was 
flown on an Estes D12-0. The rocket had a mass of 0.605 kg and a mass-moment-of-inertia of 
0.01428 kgm2.

Figure 9 shows the estimated orientation of the rocket after liftoff was detected. The rocket 
almost immediately pitched over after liftoff. At around 0.372 seconds, data logging stopped 
and the PID loop was terminated because the flight software had an integrated abort system 
that triggered when the pitch or yaw surpassed +/- 30 degrees. This abort sequence saved all 
the data into the SD card, detached electrical connections to the servo motors, terminated all 

Figure 8. Shows the rocket’s angle relative vertical in degrees as a function of time.
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functions, and deployed the parachutes. This sequence ensured that all relevant data would 
be saved and that damage to the rocket and avionics would be minimized when the rocket’s 
orientation surpassed a point of no return.

The large undesired orientation change was caused by several issues within the physical 
model. When assembling the thrust vector control gimbal, there were misalignments within 
the two axes. Therefore, at liftoff, the rocket immediately pitched over, as seen in Figure 9. As 
the PID controller tried to correct this error, the misalignment caused larger errors to occur. 
As can be seen in Figure 10, the PID controller tried to output a value much greater than 5 
degrees, and subsequently kept outputting values greater than 5 degrees. The TVC mount had 
an actuator limit of +/- 5 degrees, which means it was not accurately reflecting the command 
output of the PID loop. 

Datalogging occurred when the accelerometers detected a significant upwards accelera-
tion. Figure 9 shows how the calculated orientation was not 0 degrees in all axes upon liftoff, 
despite being in a stationary position. This drift was most likely caused by small amounts of 
gyroscope noise being integrated into large errors over time. This large error in orientation 
readings was then fed into the PID control loop and further caused the large pitch over.

After the abort was called, the rocket flew completely out of control and collided with the 
ground. As seen in Figure 11, the rocket immediately angled sideways and spun out of control. 
Although the rocket’s outer body frame was shattered and the TVC mount was broken, the 
flight avionics, data, and servo motors were still intact. Figure 12 depicts other parameters 
measured during the flight, where X, Y, and Z are the roll, yaw, and pitch axes respectively. All 
measurements were plotted as a function of time detected after liftoff.

Figure 9. Orientation of the rocket in degrees as a function of time after liftoff was detected by the 
finite state automation function.
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Figure 10. Error inputted to the PID controller versus output as a function of time detected after 
liftoff.
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Figure 12 also depicts the raw versus filtered linear acceleration readings in the vehicle 
reference frame. The raw readings are passed into separate Kalman filters, which smooth 
the data. However, the Kalman filter over filtered the data, which was most likely caused 
by measurement uncertainty, rn, that was too large. Although the filter may have provided 
skewed data, the accelerometer data was not used for any active control aspects of the flight, 
therefore, these incorrect readings did not contribute to the lack of control throughout the 
flight.

3.3 Model and Simulation Verification

Although the flight did not take the desirable flight path due to errors in the physical model, 
we cross-referenced data from the real-world model’s flight to the simulation that was run of 
that model. Figure 15 depicts the simulated flight orientation versus the actual flights in the Y 
and X axes (yaw and pitch respectively).

4 CONCLUSIONS

The results of the simulation and model indicate that a PID controller-based navigation 
system would be a viable option for rockets to use as a control system. Using an accurate 
simulation that matched real-world data (Figure 15), the three tuning parameters of the PID 
system could be calculated for an optimal flight. Furthermore, a quaternion-based orienta-
tion system was developed to solve gimbal lock and 3D space orientation problems, along 
with an implementation of a Kalman filter to reduce the effects of noise and increase the 
robustness of the overall system.

Figure 11. Different phases of the rocket flight are depicted in one photo. By the second and third 
freeze frames, the abort sequence had already fired, and the rocket was uncontrolled.



29NMJS 2022  |  Volume 56

Figure 12. Raw and filtered accelerometer readings.
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Figure 13. X, Y, Z (roll, yaw, pitch) readings from the gyroscope.

Figure 14. Y-axis (yaw) orientation of the simulated flight of the real-world model and the actual 
flight.
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Figure 15. Z-axis (pitch) orientation of the simulation versus the actual flight. The real-world model’s 
orientation values have drifted up about 4 degrees due to the integration of small noise values, 
causing an offset.

Although the real-world model did not fly as expected, the analysis showed that this was 
caused by misalignment of the parts and by design errors. We hope to fly another version of 
the real-world model soon after conducting a few improvements to the model and further 
improving the simulation for more accuracy.

4.1 Simulation Improvements and Future Implementations

The simulation worked very well at predicting the flight path and properties of the real-
world model but also has some future implementations and improvements such as:

•	 Implementing the actual formulas for the fluid dynamic calculations.

•	 Adding a visualization of the flight using animations.

4.2 Real-World Model Improvements and Future Implementations

Software

•	 Faster loop speeds by optimizing the available SRAM onboard the flight computer and 
creating more efficient functions.

•	 Add anti-windup to the integral term by clamping the output to the actuator limit of 
the TVC mount.

•	 Experiment with different methods of control such as model-predictive control or a 



32NMJS 2022  |  Volume 56

linear quadratic regulator. 

•	 Potentially implementing roll control with a reaction wheel or adding position control.

•	 A dynamic setpoint that pitches the rocket in a certain direction.

Hardware

•	 Adding a self-alignment system in the form of a hex driver that inserts into the side. 

•	 Moving avionics upward will lift the center of mass, giving the TVC more torque 
authority by increasing the lever arm. 

Finally, the fact that this project is not the end cannot be overemphasized. The real-world 
model, control system, simulation, and flight software can have many new improvements, 
and with more research and development, we hope to see a larger growth within the space 
industry.
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APPENDIX A

Symbol Description

TVC Thrust-vector-control

PID-Controller Proportional-Integral-Derivative Controller

GNC Guidance, navigation, and control.

IMU Inertial-measurement-unit

3DOF Three degrees-of-freedom

MMOI Mass moment of inertia

CAD Computer-Aided Design

PLA Polylactic Acid

a Distance from end of engine and center of mass

A World reference frame linear acceleration

at Linear acceleration

cl Coefficient of lift force

aref Reference area of the rocket

dair Density of air

e(t) Error

e Motor mount misalignment

Fl Lift force
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Fmotor The total force from the rocket motor

Fmotor(x) x-direction vector of the engine force

Fmotor(z) z-direction vector of the engine force

Gn Kalman gain

g Gravitational constant in m/s2

Kd Derivative gain

Kp Proportional gain

Ki Integral gain

L Length of string

m Rocket mass

p Period of the rocket swing in the two-string pendulum

Pn Estimate uncertainty

Q Quaternion orientation

Qinit Base world reference frame quaternion

Qt Quaternion orientation at time step t

q Process Variance

r Distance from center of mass and string

rn Measurement uncertainty

u(t) PID controller output

Xt Kalman filter estimate

Zn Measurement input

α Roll

β Yaw

θ Pitch

σ The angular position of the TVC gimbal

Δt Change in time

ωt
Angular rate
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APPENDIX B

       The Hamilton product operator is the noncommutative multiplication of two quaternions. 
For quaternions a and b, a        b = i is defined as




