CIRCA- CircularRNA for Cancer Active
Immunotherapy: A Machine Learning Model to
Predict Liver Cancer and Top Genes for Cancer
Vaccine

Aditya Kiran Koushik
) La Cueva High School, Albuquerque, NM, USA

ABSTRACT

Circular RNAs (circRNAs) are long non-coding RNAs with excellent prognostic and diag-
nostic biomarker properties for many diseases including cancer. By using liver tissues of
Hepatocellular Carcinoma (HCC) patient dataset, this study designed and tested a robust
machine learning pipeline to predict HCC and circRNA targeted hub gene immunogenici-
ty forimmunotherapy. First, a publicly available circRNA microarray dataset was analyzed
in Python for the top twelve deregulated circRNAs in tumor tissue compared to healthy
tissue. Next, classification models were trained and tested on the circRNA data. microRNA
(miRNA) and gene targets (mRNA) of deregulated circRNAs were predicted and top hub
genes were found from gene interaction network analysis in Cytoscape. Finally, an im-
munogenicity predictor in Python was built with a T-cell epitope prediction framework.
This study found: 1) hsa_circ_0005284 is strongly upregulated in tumor tissue and hsa_cir-
cRNA_089372 is strongly downregulated, 2) the Logistic Regression and Naive Bayes clas-
sification models most accurately predicted tumors from circRNA data, 3) the TMED10
and RABIA hub genes were most immunogenic based on Python predictions. In conclu-
sion, this project identifies hsa_circ_0005284 and hsa_circRNA_089372 as well as their
linked immunogenic hub gene peptides as biological candidates for a liver cancer vaccine.

KEYWORDS: Liver cancer, circRNA, miRNA, T-cell epitope, Machine Learning, Artificial In-
telligence, Bioinformatics, Immunogenicity, Oncogenes and Cancer Vaccine.

1 INTRODUCTION

1.1 Liver Cancer Pathophysiology

Liver cancer is a deadly disease where abnormal cell division occurs in the liver. Liver
cancer remains a global health challenge as it is a leading cause of cancer-related death
worldwide. Hepatocellular carcinoma (HCC) is the most common form of liver cancer, and
it accounts for over 90% of cancer cases. Viral infection from hepatitis b and c are the most
common causes of development, although non-alcoholic steatohepatitis associated with
diabetes mellitus is also a frequent risk factor now rising in the west (Llovet et al., 2021). A few
known mechanisms of HCC development/progression include genetic predisposition, viral
and non-viral risk factor interaction, and cellular microenvironment alteration. Genes that
play oncogenic (cancer-causing)/tumor suppressive roles can create changes in the cellular
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microenvironment. With high throughput next-generation sequencing and artificial intelli-
gence (AlI) analysis, these genes can be identified and targeted (Balogh et al., 2016).

1.2 Screening, Diagnosis, and Prevention

Liver cancer can be diagnosed with a detection of a liver nodule in an abnormal ultraso-
nography test and with high serum o-fetoprotein levels (>20 ng/ml). Lesions less than 1 cm
in diameter can be detected with ultrasonography, but for bigger lesions, a quadruple-phase
CT scan or MRl is required. More and more methods to diagnose and screen HCC are being
developed, which includes circular RNA (circRNA) biomarkers-which is being further
explored in this study. Currently, HCC can be prevented from viral hepatitis vaccines, but
there is no cure or vaccine for non-viral HCC (Llovet et al., 2021).

1.3 CircRNAs Functions and Mechanisms

CircRNAs are non-coding RNAs that form closed, continuous loops that and regulate genes
in mammals. CircRNAs are generated via the back splicing of exons and introns to form
exonic or intronic circRNAs (Greene et al., 2017). CircRNAs lack 5’-3’ ends and poly a tails.
The image in Figure 1 demonstrates the mechanisms and functions of circRNAs (Conn et al.,
2015). Recent evidence implicated circRNA-mediated mechanisms in many cancers, includ-
ing liver cancer (Liu, Zhang, Yan, & Li, 2020; Shen et al., 2021; Su et al., 2019; Zhang et al.,
2019).

The present study is focused on using publicly available circRNAs expression data in HCC
tumor tissue versus healthy tissue and identifying optimum machine learning model that
correlate with tumor occurrence and likely predict tumor occurrence based on circRNAs
expression levels. The study also extends to the test circRNAs -miRNA-mRNA/protein
network for circRNAs target hub gene (protein) for potential cancer immunotherapy.

1.4 miRNA Sponging

Micro RNA (miRNAs) are small noncoding RNAs. miRNAs control gene expression by
binding to the 3’-unstranslated region (3’-utr) in mRNAs and inhibit/suppress messenger
RNA (mRNA) and translational processes. Many studies demonstrate that circRNAs contain
miRNA response elements (MRES), which serve as miRNA sponges. CircRNAs can regu-
late gene expression via releasing miRNA to target genes (mRNAs). These mRNAs that are
targeted/regulated by circRNAs via miRNA sponging will be referred to as circRNAs-targeted
genes. CircRNAs that have a superior ability to bind to circRNAs are called “super sponges.”
Figure 2 explains the process in which circRNAs can cause cancer. Since miRNAs in turn
regulate their target mRNAs, which can affect the protein expression, some of which may be
oncogenes and others can act as tumor-suppressors; therefore, it is important to understand
circRNAs -miRNA-mRNA-protein expression relationships for developing cancer therapies
at different stages. Because proteins are the ultimate drivers of the disease process, it is also
important to test if they can be directly targeted by immunotherapy via T-cell mediated block-
ing of such oncoproteins.
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Figure 1. CircRNA interactions. 1. Protein translation-classic translational machinery can occur

on circRNA producing proteins; 2. miRNA sponging-circRNAs can act to bind to miRNA and
deploy when needed for anti-sense inhibition of complementary mRNAs; 3. Splicing regulation-to
lead to production of circRNAs and mRNAs; 4. Interact with RNA binding proteins-circRNAs can
interact with RNA binding proteins and can regulate post-transcriptional processes; 5. Regulation
of transcription-circRNAs can regulate transcription of mRNAs. 6. Epigenetic alteration regulation-
circRNA can also alter epigenetics. Created with BioRender.com.
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Figure 2. Schematic showing how circRNA may play a role in cancer. Created with BioRender.com.
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1.5 T-cell activation and killing

T-cells are a type of leukocytic cell that play an essential role in the immune system
(Henderson, 2021). T-cells originate in the bone marrow and are matured in the thymus.
T-cell activation can involve antigen specific simulation. The T-cell receptor (TCR) binds to
the antigen on the major histocompatibility (MHC) complex present on the surface of the
antigen-presenting cell (APC) such as dendritic cells. This results in the activation of a killer
T-cell (cytotoxic or CD8+ T-cell) which can kill tumor cells as shown by Figure 3 (Cavanagh,
(n.d.)). After antigen simulation, CD8+ cytotoxic T lymphocytes kill tumor cells by secret-
ing granzymes and perforins. Perforins allow granzymes to enter the cell by holes in the cell
membrane, and granzymes activate the protease caspases, resulting in apoptosis. CD4+
helper T-cells perform several different functions (De candia, Prattichizzo, Garavelli, & Mata-
rese, 2021). As an example, they produce cytokines which enhance effectiveness of cyto-
toxic T-cells and respond to MHC class II antigen stimulation and are required to produce
antibodies from B-cells (Garnelo et al., 2017). T-cell epitopes are peptide sequences that are
presented by the MHC class II receptors on APCs, which result in stimulation of CD4+ helper
T-cells and cytotoxic lymphocytes, resulting in immune system activation (Figure 3).
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Figure 3. Potential tumor therapy strategy to identify oncogenes/oncoproteins in the hub-genes
coded by mRNAs that are in turn regulated by circRNAs. Created with BioRender.com.

1.6 Immunogenicity

Immunogenicity is the ability of a protein to elicit an effective immune response. In any
oncogene(s), a high T-cell epitope count can mean a higher immunogenicity and more effec-
tive immune response, and thus cytotoxic T-cell killing of tumor cells as shown by Figure 3
(De Groot et al., 2020). Peptides from proteins with high immunogenicity are great candidates
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for peptide vaccines, which offer a significant alternative to whole cell antigens because of
protective immune response, specificity and recognition to specific antigen, and fewer side
effects (Muhammad et al., 2020).

Based on the above background, the present study used publicly available circRNAs expres-
sion data and identified optimum machine learning model that could predict, i.e. highly
correlate with, the occurrence of hepatocellular carcinoma in patients and to predict the
immunogenicity of deregulated circRNAs gene targets (called "hub genes") associated with
tumor growth.

2 MATERIALS AND METHODS
2.1 Materials

The data for the present study was obtained from https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE155949 for data on ~60,000 circRNA expression levels in tumor

(n=49) and adjacent healthy tissue (n=49) from n=49 liver cancer (HCC) patients (total n=98
HCC patient samples) (publicly available from GEO - gene expression omnibus). Additional
materials/resources used for this study are as follows: Jupyter notebook running Python 3,
Cytoscape (Shannon et al., 2003) for circRNA-miRNA-gene network, Protein-protein inter-
action network, and hub gene analysis, circInteractome to predict circRNA-miRNA pairs
from https://circinteractome.nia.nih.gov/mirna target sites.html, miRWalk (Sticht, De La
Torre, Parveen, & Gretz, 2018) to predict miR-gene pairs from http://mirwalk.umm.uni-hei-
delberg.de/, fully licensed version of BioRender to prepare model of the concept, Microsoft
Excel/GraphPad Prism for data analysis, Human protein atlas for validation (https://www.
proteinatlas.org/), GitHub repository for T-cell epitope data https://github.com/pirl-unc/
cd8-tcell-epitope-prediction-data, Python modules used include SciPy, Pandas, NumPy,
Matplotlib, Sklearn and Seaborn. Graphics included in Figure 1-4 are generated using fully
licensed version of BioRender®-an online graphical tool.

2.2 Methods

First, all necessary modules were installed on Python/Anaconda using “pip install” Next,
data publicly available from GEO was downloaded. Using Pearson correlation, the top 12
circRNAs most correlated with tumor occurrence (|r| > 0.68 & p <0.01) were identified. In this
study, Pearson correlation can be used for categorical variable data. To validate the top 12
circRNAs, the mutual information (information gain) algorithm was used. Next, data on the
top 12 circRNAs found previously was loaded into a new Jupyter notebook and the data was
shuffled to prevent bias. Next, the data was split into training and testing with 70% - 30% split
(70 for training ML models, 30 for testing). Machine learning analysis was performed for the
data with seven models (K-nearest neighbor (KNN), Random Forest, Decision Tree, Support
Vector Machine (SVM), Naive Bayes, Gradient Boosting, and Logistic Regression (described
in methods). The predictive ability of these models was measured with classification accuracy
(percent of correctly predicted tumor occurrences in patients), area under ROC curve (True
positive vs False positive rate), and confusion matrix. To eliminate biases from the train-
test split, Stratified K-fold Cross Validation was performed in Python, and model accuracies
were compared with train-test split (normal machine learning). The confusion matrix was
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performed on 12 circRNA features. Top two circRNAs were only selected for further analysis
involving miRNA and mRNA expression. The confusion matrix was generated with true posi-
tive (model predicted positive and the actual label is positive), false positive (model predicted
positive and the actual label was negative), true negative (model predicted negative and the
actual label is negative) and false negative (model predicted negative and the actual label was
positive). The second part of the project is to find circRNA- regulated hub genes (mRNAs)
and their immunogenicity. To do this, another circRNA filter was created but made more
statistically stringent to only get the top two circRNAs (strongest correlated with tumor occur-
rence) with criterion (Jr| > 0.7 & p <0.01). Using the circInteractome (Dudekula et al., 2016)
and mirWalk algorithms and Microsoft Excel, datasheet was compiled of circRNA-miRNA-
gene (MRNA) interactions for the top two circRNAs. Next, the interactions were graphed in
Cytoscape as well as interaction strength/probability. Using the STRING function in Cytos-
cape, a gene interaction network (PPI) was created to model the circRNA-targeted gene inter-
actions. Using the MCODE algorithm (finds clusters in the gene networks), the top hub genes
(strongest correlation) for each circRNA were determined. Next, the Human Protein Atlas
website was referenced for validation of the genes (check to see if the predicted hub genes are
known oncogenes). To predict the immunogenicity of the hub genes, a T-cell epitope dataset
was downloaded from GitHub. Using epitopes found in this dataset, a Python program was
written to determine the number of T-cells epitopes as well as clusters of epitopes that are
found in each hub gene protein sequence. More T-cell epitopes equates to higher immuno-
genicity since more T-cell epitopes can elicit more effective immune response by CD8+ and
CD4 T-cells. To compare predicted epitopes to a negative control, a random “fake” protein
sequence was generated in Python that has the same length as the hub gene, and the number
of epitopes found was recorded. Finally, the number of T-cells epitopes found for each hub
gene was normalized to the peptide length of each hub gene, and all immunogenicity scores
and results were recorded. A brief overview of the methodology is shown in Figure 4.

Additional statistical methods, Python code and machine learning algorithms are described
below.

Code snippets: All code can be found at this GitHub repository: https://github.com/adityak-
oushikk/ml-bio. About 1730 lines of code in total was needed.

Data Analysis and Filtering: The code (in Figure 5) filters the top 12 circRNAs using
Pearson correlation. CircRNAs that have correlation coefficient |r|>0.68 and p-value
(significance) < 0.05 are shortlisted. Pearson correlation is given by the equation (1):

_ _2x-D-y)

"= 207 ()
Where r is the correlation coefficient, x is the values of the independent variables (each of the
12 circRNAs), X is the mean of the independent variable sample, y is the values of the target
variable (tumor occurrence represented in binary 0-No tumor, 1-Tumor), y is the mean of the
values in the target variable sample. Pearson correlation on categorical data works the same
as point biserial correlation.
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Figure 4. Experimental outline showing the analysis pipeline. Created with BioRender.com.

Machine Learning in Python & Examples: KNN

Hamming Distance
K
Dy - Z lx; — ¥il
i=1
x=y =>D=0 (2)

x#¥y =>D=1

An example of building a machine learning model in Python is shown in Figure 5. This
classification model is K-Nearest Neighbor. First, data is split into 70% for training the model
and 30% for testing using the train-test split from SKlearn. The KNN model from SKlearn
is imported, and the model is fit (learns patterns in data using the KNN algorithm) for the
training data. The trained model is tested on the other 30% of the data, and the prediction
accuracy is displayed. A confusion matrix is displayed (explained in detail in results section).
The K-nearest neighbor classifies data by looking at similarity based on Hamming distance
(equation 2), or the neighboring points (if other points near the point at question fall under
a certain class, then the point at question will most likely fall into that class). The Hamming
Distance function is shown on the left (used for categorical prediction -https://www.saed-
sayad.com/k nearest neighbors.htm), where K determines the number of neighbors. The
code for building the other machine learning models is repeated in a similar way.
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#create a dict to keep track of the accuracy of each model

accuracies = {}

#X will contain circRNA values, y will contain target variable - tumor
X = circ.values

y = circ[ 'Tumor'].values

X = np.delete(X,0,axis=1)

#split the dataset into 70-30 for training and testing

x_train, X test, y_train, y test = train_test_split(X,y,test_size = 0.3,random state=1)
scoreList = []

# KNN Model

from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(n_neighbors = 2)

knn.fit(x_train, y train)

print("{} NN Score: {:.2f}%".format(2, knn.score(x_test, y test)*100))
knn_predictions = knn.predict(x_test)
scoreList.append(knn.score(x_test, y_test))

acc = max(scoreList)*100

accuracies[ 'KNN'] = acc

confusion matrix(y_test, knn_predictions)

2 NN Score: 83.33%

array([[15, 1],
[ 4, 10]])

knn_predictions

AETaVlIL, 1, Oy 1, D, 0y 0, 1, 0, 0, 1, O, O, 1, 0, O, 0, 1, 0, 0, 1, O,
o, 1, ¢0,0,0,1, 1, 0])

Figure 5. K-Nearest Neighbor (KNN) classification model in Python.

Random Forest & Decision Tree: Decision trees learn by splitting dataset into smaller
subsets to predict a target value (each condition is called a node, and possible outcomes are
called “branches”), hence forming a tree. Random forest consists of many individual deci-
sion trees that operate as an ensemble (multiple learning algorithms). Decision Trees usually
classify using Gini impurity, which gives a probability of misclassifying an observation by
randomly picking a datapoint and randomly classifying it according to the distribution of the
dataset (equation 3). The equation is shown on below, where C is the total possible classes,
p(i) is the probability of picking a datapoint with class i (in this study, C is 2 for Tumor/No-tu-
mor prediction, and p(i) would be 0.5).

G= Y p@)=*1-pd) (3)

Logistic Regression: Logistic Regression solves binary classification problems although it is
aregression function. The basis of logistic regression is the sigmoid function shown in equa-
tion 4:

y=— (4)

T 1t+e*
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The function can take any real value number and map it to a value between 0 and 1
(continuous circRNA expression values can be mapped in this way). The sigmoid curve
can be graphed as in Figure 6 (https://towardsdatascience.com/logistic-regression-ex-
plained-9ee73cede081). With this method, the location of the point on the curve can deter-
mine the classification of that point. In this study, the x-axis would be the circRNA expression,
and the y-axis would be the probability of tumor vs no-tumor.

Logistic Regression

0.8
5006
E °
5%
£ 5:)00.4
Category 1 observations O
Category 2 observations o
0.2
1)
00 o000 @00°
-4 2 0 2 4 6
X
(Measurement)

Figure 6. Sigmoid curve based on Logistic Regression showing CircRNA expression values (0 and 1; 0
being no tumor and 1 being tumor).

CircRNA-miRNA-Gene network

First, the top 2 circRNAs from Pearson correlation filtering (|r| > 0.7) were found (further
explained below). These circRNAs were entered into the circInteractome website to predict
the miRNA sponges for each of the two circRNAs. Figure 7 (based on circInteractome analy-
ses - https://circinteractome.nia.nih.gov/mirna target sites.html) shows the result for one of
the circRNAs (hsa_circ_0005284). Only the top 3 miRNAs were selected based on the context+
score (smallest numbers are ideal). miRNAs selected for hsa_circ_0005284 were hsa-miR-558,
hsa-miR-639, hsa-miR-626. For hsa_circRNA_089372, miRNAs selected were hsa-miR-
1247-5p, hsa-miR-1289, and hsa-miR-1184. These miRNAs were fed into the mirWalk algo-
rithm to predict the gene (mRNA) targets that these miRNAs inhibit. Figure 8 shows an
example for gene target search with mirWalk for hsa-miR-1184. These analyses were done

based on mirWalk (http://mirwalk.umm.uni-heidelberg.de/). Genes were filtered for a score

higher than 0.85, only CDS (coding sequence genes), and finally validation from miRTarBase.
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miRNAID __mm:mm<auo_ __o.mm :O_uw v v v|[miRTarBase v| E
miRNA = RefseqlD -~ GeneSymbol <. | Duplex = |Score = |Position - |Binding Site = | Au = | Me = | N Pairings - | Targetscan - | Mirdb = | Mirtarbase - M
|
hsa-miR-1184 | NM_001256695 | PRDM11 7 details 0.92 CDS 3292,3330 0.37 | -5.18 22 - - MIRT790030 7
hsa-miR-1184 | NM_001271282 | DICER1 details 1.00 CDS 5623,5675 0.52 -5.495 | 20 — Link MIRT558376
hsa-miR-1184 | NM_001271608 | LASP1 7 details 0.92 CDS 596,619 0.34 | -6.828 |18 = = MIRT735893 7
hsa-miR-1184 | NM_001282878 | LAX1 details 1.00 CDS 824,846 0.48 | -6.372 |18 — - MIRT643447
hsa-miR-1184 | NM_001284390 | VGLL4 7 details 1.00 CDS 878,898 0.27 -8.492 | 18 _ Link MIRT464214 7
hsa-miR-1184 | NM_001284391 | VGLL4 . details 1.00 CDS 780,800 0.27 -8.492 | 18 - Link MIRT464214
hsa-miR-1184 | NM_001286265 | MRS2 7 details 0.92 CDS 978,1001 0.53 | -6.352 |18 — - MIRT640711 7
hsa-miR-1184 | NM_001287489 | OTOF details 1.00 CDS 3440,3474 0.34 | -5.269 | 19 - - MIRT718119
hsa-miR-1184 | NM_001287489 | OTOF 7 details 1.00 CDS 5364,5392 0.46 | -5.763 | 20 - - MIRT718119
hsa-miR-1184 | NM_001287489 | OTOF details 1.00 CDS 2559,2586 0.35 -6.484 | 21 - —_— MIRT718119
hsa-miR-1184 | NM_001290145 | POLDIP2 7 details 1.00 CDS 954,999 0.37 | -10.845 | 17 — Link MIRT566361
hsa-miR-1184 | NM_001297576 | PEA1S details 0.92 CDS 512,534 0.48 | -4.171 |18 - Link MIRT735898
hsa-miR-1184 | NM_031459 SESN2 7 details 1.00 CDS 1077,1139 0.31 -8.382 | 18 -_ — MIRT505717
hsa-miR-1184 | NM_032206 NLRCS . details 0.92 CDS 4773,4799 0.47 -8.948 | 19 - —_— MIRT725310
hsa-miR-1184 | NM_032206 NLRC5 7 details 1.00 CDS 1929,1953 0.43 |-5.771 |19 = = MIRT725310
hsa-miR-1184 | NM_032313 NOA1 details 1.00 CDS 1872,1908 0.56 |-6.251 |21 — — MIRT719531
hsa-miR-1184 | NM_032816 CEP89 7 details 0.92 CDS 950,979 0.53 -4.957 |19 = = MIRT626489
hsa-miR-1184 | NM_080550 SYNRG details 1.00 CDS 1030,1062 0.4 -6.484 | 18 - — MIRT725121
hsa-miR-1184 | NM_133635 POFUT2 7 details 0.92 CDS 182,205 0.43 | -10.139| 18 = = MIRT761200
hsa-miR-1184 | NM_180976 PPP2RS5D details 0.92 CDS 1753,1772 0.38 | -10.526 | 15 - - MIRT735899

Figure 8. mirWalk analyses showing mRNA (hub gene) targets for the top miRNA from Figure 7. Based on this, it is expected that these
mRNAs are inhibited by microRNAs that are in turn sponged by CircRNA (from Figure 6 above). The identified miRNA-mRNA pairs were
validated by miRTarBase.
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Immunogenicity Prediction

Figure 9A shows the head of the T-cell epitope dataset, which contained about 200,000
T-cell epitopes. First, epitopes were filtered for only human alleles of MHC proteins (HLA).
Next, they were filtered for the best nanomolar affinity between each epitope and peptide
(most often an IC50 or inhibit concentration value). The smaller value indicates a higher
MHC binding affinity and therefore a better epitope. Each IC50 value was normalized to a
value between 0 and 1 using 1 - log (min(IC50, 50000))/1og(50000). The epitopes that scored
less than 0.35 on the normalized scale were discarded. Another dataset on eluted-MHC
ligands was downloaded, which contained epitopes that are identified to bind MHCs via
immuno-precipitation. Finally, an overlap between epitopes from each dataset was created,
and the epitopes (Figure 9A) would be checked in the hub gene peptide sequences.

u_n

Figure 9B was the program used to find the immunogenicity of each protein sequence. “e
was the peptide sequence, and x was each T-cell epitope. The location of each epitope found
was also predicted. Location is given by the position of the epitope amino acid in the full
proteins sequence. For example, the full proteins sequence for KDELR1 hub gene is shown in
Figure 9C. The epitope clustering in Figure 9C was determined by the location of epitopes in
the protein sequence.

CircRNA correlation (Supplementary Finding): Some circRNAs are highly correlated
with each other, rather than with tumor occurrence. The researcher hypothesized that
circRNAs that are highly correlated with each other come from the same gene. For exam-
ple, ASCRP3008985 (hsa_circ_0008539) and ASCRP3009102 (hsa_circ_0031027) have a strong
correlation (r = 0.95) on the heatmap. Arraystar data on the two circs show they come from
the same gene (TMCO3). Example graphs are shown below (Figure 10), and actual correla-
tions are in Figure 11.

Correlation of circRNAs from TMCO3 gene Correlation of circRNAs from BACH?2 gene
. 7.5 .
7.0 . .
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R7) o '3 7. $ e
§ : .:' L] Em) LYy o‘... ¢
.8 6.5 e .5 S5
E hFe 2565 e
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Figure 10. Pearson correlation for hsa_circ_0008539 and hsa_circ_0008539 for hub gene TMCO3
(A); and has_circ_0001627 and has_circ_0001626 for hub gene BACH2 (B). Pearson correlation
coefficient for panel A - 0.95; Pearson correlation coefficient for panel B - 0.97.
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3 RESULTS

The results are divided into following sections: CircRNA & Tumor Correlation, Machine
Learning, Cytoscape Network Analysis, Validation & Survival Analysis, and Immunogenicity
Prediction.

CircRNA & Tumor Correlation

Figure 11 shows the Pearson correlation heatmap generated in Python of top 12 deregu-
lated circRNAs. Purple regions indicate strong negative correlation, and green areas indicate
strong positive correlation. The most significant column is the first column, as it shows the
correlation with tumor occurrence, which is this study’s purpose. CircRNAs that are strongly
negatively correlated (r<0) with tumor occurrence are downregulated (less expression in
tumor tissue compared to healthy tissue), and circRNAs that are positively correlated (r>0)
are upregulated (more expression in tumor tissue compared to healthy tissue). Upregulated
circRNAs are associated with tumor growth, while downregulated circRNAs are not associated
with tumor growth. The top 12 deregulated circRNAs can also be visualized similarly with
violin plots below (Figure 12).

Violin Plots of Top 12 Deregulated CircRNAs

Figure 12 shows the violin plots for the top 12 deregulated circRNAs. The violin plot graphs
the general distribution of the data as well as the median signal intensities for both Tumor
and No-Tumor samples (0 indicates No-Tumor, 1 indicates Tumor). The shape of each plot
follows a probability density function, where the widest point indicates a high probability
that each sample will have the given circRNA expression value. A uniform shape shows a
normal distribution, where data points are concentrated around the median. Dots shown in
the middle of the graph represent each of the 98 tissue samples from the dataset, and more
concentrated/clustered data points will widen the probability density function/distribution
curve. Upregulated circRNAs show a blue violin plot higher than the red (signal intensity/
expression for tumor samples is higher than for non-tumor samples), and the opposite for
downregulated circRNAs. Distributions of both Tumor and Non-Tumor plots show generally
normal distributions with some plots having an irregular distribution.

After restricting the Pearson correlation values to [r] > 0.7, the top 2 circRNAs
were ASCRP3001251 (formal alias is hsa_circ_0005284) and ASCRP3001458 or hsa_
circRNA_089372. The hsa_circ_0005284 is upregulated in tumor with a correlation value of
0.71 and hsa_circ_089372 is downregulated with correlation value of -0.82 (strongest out of
all circRNAs). Figure 13A & 13B are graphs of a sigmoid function fit for the top 2 circRNAs.

From the graphs, high hsa_circ_0005284 expression values are mostly associated with
tumor occurrence, while high hsa_circRNA_089372 expression values are indicative of no
tumor. This shows that the circRNAs are opposites of each other, and the sigmoid curves
are also pointing opposite ways for each circRNA. hsa_circRNA_089372 (Figure 13A) has a
more uniform sigmoid curve and higher Pearson value than hsa_circ_0005284 (outliers at
the top of the graph). The sigmoid curve in Figure 13A is close to 1, which shows a near 100%
tumor probability for low circRNA expression. In Figure 13B, the probability curve is not as
certain and even high signal intensity will only guarantee ~90% tumor probability. Overall,
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from sigmoid curve analysis and Pearson correlation, hsa_circ_089372 is more correlated
with lower tumor probability and is relatively a better biomarker than hsa_circ_0005284 albeit
both show strong, yet opposite, correlations (hsa_circ_089372 - negative correlation and hsa_
circ_0005284 - positive correlation) with tumor probability.
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Figure 11. Pearson correlation heatmap generated with intensity of expression of top 12 deregulated
circRNAs in healthy liver/non-tumor and tumor regions. X and Y-axis - circRNA type, and first
column depicts Pearson correlation value for each of top 12 circRNA for tumor. Other columns
correlations between circRNAs based on their expression intensity. Data generated in Python of

top 12 deregulated circRNAs. Purple regions indicate strong negative correlation, and green areas
indicate strong positive correlation. The most significant column is the first column, as it shows the
correlation with tumor occurrence.
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Sigmoid fit for circRNA-tumor correlation
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Figure 13. Sigmoid curve based on Pearson correlation for circRNA and tumor occurrence. (A) has_
circRNA_089372 vs tumor probability. (B) has_circRNA_00005284 vs tumor probability.
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Machine learning and model accuracies

Figure 14A shows the accuracies of seven machine learning classification models after
trained by the dataset. The logistic regression scored the highest with 100% accuracy. Model
accuracies for other machine learning algorithms were 'KNN': 83.33, 'Random Forest': 96.67,
'Decision Tree'": 73.33, 'SVM": 96.67, 'Naive Bayes": 96.67, 'Gradient Boosting': 90.0 (Figure 14).
There is a chance that the model might be overfitting (generalizing patterns in training data
but performing poorly in test data), but through cross-validation this can be prevented. This
was further confirmed by confusion matrix analyses (Figure 14B).

Figure 14B shows the confusion matrix for each of the seven machine learning models.
Confusion matrices evaluate model performance by showing the number of predictions of
each class. Table 1 shows what each number means in each quadrant of the confusion matrix:

Predicted: Tumor Predicted: No Tumor
Actual: Tumor True positive False Positive
Actual: No Tumor False Negative True negative

Table 1.

True Positive: # of correctly predicted tumor occurrences
False Positive: # of incorrectly predicted tumor occurrences
False Negative: # of incorrect predictions of no tumor (healthy)
True Negative: # of correct predictions of no tumor (healthy)

To better visualize the confusion matrix, a receiver operating characteristic (ROC) curve
was plotted for all seven machine learning algorithms. An ROC curve illustrates the diagnostic
ability of a binary classifier system as its discrimination threshold is varied. Overall, many of
the machine learning algorithm tested showed >0.9 sensitivity compared to random predic-
tion, whose area under the curve (AOC) was at 0.5 (Figure 15). Model performances were
analyzed using ROC curves and AUROC (Area under ROC curve). The ROC curve plots the
True positive rate (TPR) vs False positive rate (FPR) (equations 5 and 6).

. TP
TPR or Recall or Sensity = TPTFN (5)
TPR = (# of True positives)/(True positives + False Negatives)
(False positive rate = (# of False Positives)/(True Negatives + False Positives)
s s FP
FPR =1 — specificity = TNTFP (6)

The AUROC is the area under the ROC curve. A good AUROC is near 1, which shows a
good measure of separability (Tumor vs No Tumor). A poor model will have an AUROC near
0, which indicates the model gets every prediction incorrect. A model with AUROC of 0.5
cannot make any separation (cannot differentiate between Tumor and Non-Tumor circRNA
samples). Figure 15 shows the ROC curve for all models. Most models had an AUROC near
1 and are therefore not visible (cross into the border). Logistic Regression, Support Vector
Machine, and Random Forest had the highest AUROC scores.
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Figure 14. Graph showing ML model accuracies and confusion matrix. (A) Shows the accuracies of 7 machine learning classification models

after training. Note that majority of the models (except decision tree) showed >80% accuracy with logistic regression showing 100% classification
accuracy. (B) shows the confusion matrix for each of the 7 machine learning models. Left label (Y-axis) - predictive value; bottom (X-axis) - actual
values. Positive value (1) and negative value (0). True positive are bottom right, false positive are bottom left, true negative are top left and false
negative are top right.
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ROC plot for circRNA-based tumor prediction
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Figure 15. ROC curve for 7 different machine learning algorithms.

Stratified K-Fold Cross Validation: Next, Stratified K-fold Cross validation was performed in
Python. In regular machine learning, the data was split using the train test split (70% of the
data used to train models, and the other 30% used to test the model accuracy). Splitting the
data with a train-test split has more bias and can lead to overfitting, so Stratified K-fold splits
the data in a different manner (Figure 16A). K-fold cross validation involves splitting data
into k equal folds (Figure 16). The first k-1 folds are used for training, and the remaining are
used for testing. This is repeated for all k-folds, and the mean of the accuracies of each k-fold
is returned. Stratified k-fold is similar, but involves splitting the data into folds not randomly,
but based on the number of each class (if fold 1 has 15 tumor samples and 15 non-tumor
samples, then fold 2 should have a roughly equal amount). This helps eliminate biases that
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come with randomly splitting the data. Model accuracies for Stratified K-Fold: KNN: 87.784,
Random Forest: 95.928, Decision Tree: 88.826, Support Vector Machine: 95.928, Naive Bayes:
95.928, Gradient Boosting: 90.846, Logistic Regression: 95.928

Figure 16B shows the model accuracies of each model after performing Stratified-K-Fold
Cross Validation. Logistic Regression, Naive Bayes, Support Vector Machine, and Random
Forest had the highest accuracy of nearly 96%.

Next, original accuracy prior to cross validation vs the accuracy after cross validation was
plotted for all machine learning models (Figure 17). After Stratified K-Fold cross valida-
tion, the KNN, Decision Tree, and Gradient boosting algorithm accuracies increased while
the Random Forest, Support Vector Machine, Naive Bayes, and Logistic Regression models
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L |
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Iteration 2 — Error
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1
teration S[II]_ - Frror, - Error = £ Y Error,

Iteration 5
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Figure 16. Cross-validation of ML algorithm (https://towardsdatascience.com/cross-validation-k-
fold-vs-monte-carlo-e54df2fc179b). (A) Stratified K-fold Cross validation was performed in Python.
(B) Shows the cross validation of 7 machine learning classification models after training.
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Original vs. cross-validation accuracy
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Figure 17. Comparison between original accuracy and validation accuracy of ML algorithm.

decreased. It is likely that the algorithms that decreased in accuracy were slightly overfitting
prior to cross validation.

Finally, re-plotting ROC and AUROC scores for each model for Cross Validation showed that
the Naive Bayes and Logistic Regression had the largest AUROC scores of 0.992 (Figure 18).

Cytoscape Network Analysis: Cytoscape is an open-source bioinformatics analyses software
tool/program that helps in visualization of gene and protein interaction networks. Using Cyto-
scape, the entire network of two circRNAs that are downregulated (hsa_circRNA_089372) or
upregulated (hsa_circ_0005284) in tumor was plotted along with their corresponding miRNAs
and mRNAs or the "hub genes".

Figure 19 is a circRNA-miRNA-gene network created in Cytoscape. “Bindingp” is a metric
predicted by miRWalk which shows the probability/score of an interaction between a miRNA
and mRNA/gene. Top two circRNAs are shown in two orange octagons, miRNA is shown in
purple circles, and genes/mRNAs are shown in squares. Fewer validated and high-scoring
gene targets were found for hsa-mir-626 and hsa-mir-639 as shown. Because of the vast quan-
tity of genes predicted by mirWalk, the researcher wanted to filter all predicted genes to the
top 4 for each circRNA. These are hub genes and usually play critical roles in HCC progression
and development.

To find the hub genes, first a PPI (Protein-Protein Interaction) or gene interaction network
was constructed using the STRING algorithm in Cytoscape for each circRNA (Figure 20). Note
that genes in hsa_circ_0005284 (upregulated in tumor as shown in Figure 20A) have no signif-
icant interaction with other genes and were not investigated in this study.

On the other hand, the PPI network of hsa_circRNA_089372 showed far more gene inter-
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ROC plot for circRNA-based tumor prediction
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Figure 18. Shows the ROC plot and AUROC scores for each model for Cross Validation.

actions compared to hsa_circ_0005284 (Figure 20B), which could mean that it likely plays a
more critical role in HCC progression and development (also proven by higher correlation
value w/ tumor). Next, the MCODE algorithm (finds clusters of genes in the network) was
performed for both PPI networks to determine the final hub gene. These clusters contain hub
genes, which was used for immunogenicity analysis. After MCODE algorithm, the resulting
hub genes involvement in cancer were validated using Human Protein Atlas (https://www.
proteinatlas.org/).
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Figure 20. Protein-protein interaction (PPI) network of hub genes regulated by (A) hsa_circ_0005284

(upregulated in tumor) and (B) hsa_circRNA_089372 (downregulated in tumor) based on STRING
algorithm in Cytoscape.
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Validation and Survival Analysis: As seen in Table 2 (below), 7/8 of the hub genes are known
to play an unfavorable or favorable prognostic markers in a variety of cancers based on the
human protein atlas. Further, 3/8 of the hub genes are known to show an unfavorable prog-
nosis in liver cancer (HCC), although additional papers outside of the Human Protein Atlas
were found that validated hub genes other than these 3 for liver cancer (for example RABIA).
Next, human protein atlas survival analysis was performed for these 3 hub genes validated for
liver cancer, and the graphs are shown below.

hsa-circ-0005284 . .

hub genes(below) Prognosis and Cancer type (from Human Protein Atlas)

TRMT2B gtr)(l)eg)nostic marker in renal cancer (favorable) and breast cancer (unfavor-

RBM28 Prognostic marker in liver cancer (unfavorable), endometrial cancer (unfa-
vorable) and melanoma (unfavorable)

IMP4 Prognostic marker in liver cancer (unfavorable)

NOM1 Not prognostic

hsa-circ-089372

hub genes (below)

MAGTI Prognostic marker in breast cancer (unfavorable), pancreatic cancer (unfa-
vorable) and melanoma (unfavorable)
Prognostic marker in liver cancer (unfavorable) and head and neck cancer

KDELRI (unfavorable)

TMEDI10 Prognostic marker in thyroid cancer (unfavorable)

RABIA Prognostic marker in head and neck cancer (unfavorable)

Table 2. Hub genes predicted by MCODE and Human Protein Atlas validation.

Survival Analysis: Table 3 shows the survival analysis graphs for the 3 circRNA targeted
hub genes that were validated for liver cancer. Out of the three hub genes, RBM28 expres-
sion levels can most significantly determine survival probability, then KDELR1 and finally
IMP4 (RMB28 had lowest p-value). In all three graphs, the survival probability for high
gene expression is lower than low gene expression, which shows unfavorable progno-
sis for high gene expression. The expression cutoff is highest in KDELR1 (highest FPKM),
which could mean that KDELRI has higher median gene expression levels. It can also be
noted that RBM28 has the lowest 5-year survival rate for high expression (0% survival rate).

Hub gene Survival analyses score
Median follow up time (years) :1.63
P score: 2.7e-11
5-year survival for high expression: 0%
RBM28 5-year survival low expression: 54%

High vs low expression is determined by the cutoff 1.52 Fragments Per Kilobase of
transcript per Million mapped reads (FPKM). High expression is above this cutoff,
low expression is below this cutoff.
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Median follow up time (years) :1.63

P score: 0.00047

IMP4 5-year survival for high expression: 35%
5-year survival low expression: 57%
High/Low expression cutoff: 15.27 FPKM

Median follow up time (years) :1.63

P score: 0.00016

KDELRI 5-year survival for high expression: 40%
5-year survival low expression: 54%
High/Low expression cutoff: 78.45 FPKM

Table 3. Survival analyses values for all three genes.

Immunogenicity Predictions: Immunogenicity predication can be done by a variety of ways.
Table 4 is the graph for the number of HLA T-cell epitopes (detailed in appendices) found in
the peptide sequences for each of the circRNA targeted hub genes. Hub genes targeted by
hsa_circ_089372 have a higher number of T-cell epitopes in general. Because each hub gene
has a different length (number of amino acids), the number of T-cell epitopes were normal-
ized to a length of 1000 amino acids using (equation 7):

#of T—cell epitopes )
(length of protein sequence)* 1000 7

The number of T-cell epitopes predicted for each hub genes is shown in Table 4 (below). For
a negative control, a random, fake protein sequence was created the same size of each hub
gene to see how many epitopes were predicted. In all random protein sequences, 0 epitopes
were found.

Gene # Of T-cell epitopes predicted for each hub gene
TRMT2B 2
RBM28 18
IMP4 78
NOM1I 20
MAGT1 110
KDELRI 52
TMEDI0 151
RABIA 151

Table 4. # of T-cell epitopes predicted for each hub gene (protein)

Next, epitope clustering histograms for the top 4 genes were created. Regions in the protein
sequences where there are a high number of T-cell epitopes have higher immunogenicity
and are great targets for a cancer vaccine. These graphs show the raw number of epitopes
(without normalization). Figure 21A-D shows the number of T-cell epitopes in each region of
the protein sequences for the top 4 hub genes with the most T-cell epitopes. Peptide regions
where there is a high epitope concentration have high immunogenicity.

The figure below shows the highest immunogenicity regions for each of the 4 hub genes,
and the peptide sequence in this region of the protein are great targets for a peptide cancer
vaccine.
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4. DISCUSSION

This study aimed to design and build multiple machine learning models to predict the
occurrence of hepatocellular carcinoma in patients and to predict the immunogenicity of
deregulated circRNA gene targets for a potential immunotherapy or cancer vaccine. With
Pearson correlation and information gain statistical methods, the top deregulated circRNAs
in tumor tissue were determined. All machine learning models used could predict the occur-
rence of tumors with circRNA expression data with >85% accuracy and many reached nearly
100% classification accuracy. The top machine learning models upon stratified k-fold cross
validation were logistic regression and naive bayes. Correlation analysis for the top 2 dereg-
ulated circRNAs showed that hsa_circ_0005284 is strongly upregulated in tumor, and hsa_
circrna_089372 is downregulated in tumor. From Cytoscape network analysis, miRWalk, and
circInteractome, the top hub genes were determined, and 7 of the 8 hub genes were validated
to be cancer-prognosis biomarkers with the human protein atlas. Finally, with t-cell epitope
analysis in hub gene peptide sequences, it was determined that IMP4, MAGT1, TMED10,
and RAB1A have immunogenic potential due to high epitope count and concentration and
are good candidates for vaccine targeting. IMP4 was the most immunogenic out of the hub
genes validated to be a prognostic marker in liver cancer (the rest were RBM28, IMP4, and
KDELR1), but RAB1A and TMED10 showed the highest immunogenicity and can still be
potential immunotherapeutic candidates for their respective cancers. However, a study by
Yang, et al. (2015) showed and validated RAB1A to be prognostic in hepatocellular carcinoma,
although not from the human protein atlas. This indicates some genes can still be prognos-
tic of liver cancer even if they are not validated from the protein atlas. Additionally, novel,
unexplored oncogenes for other cancers could be predicted with the pipeline developed in
this study since it was validated to work and predict oncogenes by the human protein atlas.
Recent reviews provide a comprehensive review on the role of circRNAs in liver and other
cancers (Liu et al., 2020; Shen et al., 2021; Su et al., 2019).

In future studies, other methods of machine learning could be explored, including neural
networks, hierarchical clustering, and more. These methods could find new trends in circRNA
expression data which could not be picked up by classification models. Additionally, pharma-
cogenomic therapies could be explored such as drug targeting and drug repurposing for the
hub genes found in this study. More immunotherapeutic options can also be explored such as
immune checkpoint inhibitors and monoclonal antibodies. CircRNA expression data can also
be explored for other cancers and the same machine learning pipeline created in this study
can be applied to all other cancers.

One of the biggest limitations to this project is data size. The circRNA expression data
was for 98 tissue samples. In the future, the researcher might try to find larger datasets on
circRNA expression and compare model accuracies. Another limitation is immunogenicity
prediction. Multiple methods can be used for immunogenicity prediction and T-cell epitope
concentration is only one of them. It is possible that epitope concentration may not be able
to fully gauge the immunogenicity of hub gene peptide sequences, so more methods could
be explored in the future.

The main future prospects of this project, if validated in biological system, is potential
development of active immunotherapy (vaccine) /passive immunotherapy (monoclonal anti-
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bodies) therapies for any cancer if circRNA data is given. The novel methodology developed
in this project (circRNA and immunogenicity) can help find immunotherapy for any cancer
with circRNA data. The machine learning models can be a valuable tool for healthcare profes-
sionals because they were over 90% accurate in predicting/diagnosing cancer using circRNA
data, potentially replacing existing diagnosing methods such as expensive MRI/CT scans/
machines).
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